Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 22 2024 18:05:10
%S 58831,286927,360653,404941,590489,623107,651587,673747,710119,740801,
%T 779413,794831,795427,1040311,1107269,1185241,1206869,1320437,1392007,
%U 1568771,1581829,1599803,1601953,1613201,1721081,1744927,1942273,1951321,1994299,2024063
%N Consider sets of 3 consecutive primes a, b, c such that c - a = 100, then sequence gives the values of b.
%H Zak Seidov, <a href="/A217603/a217603.txt">Table of n, a, b, c for n=1..1000</a>
%H Zak Seidov, <a href="/A217603/a217603_1.txt">Table of n, a, b, c for n=1..1000</a>
%e a(1) = 58831 because {58789, 58831, 58889} is the first set of 3 consecutive primes a, b, c with c-a=100.
%e a(2) = 286927 because {286873, 286927, 286973} is the second set of 3 consecutive primes a, b, c with c-a=100.
%e a(1000) = 23090087 because {23090059, 23090087, 23090159} is the 1000th set of 3 consecutive primes a, b, c with c-a=100.
%t s = {}; a = 2; b = 3; c = 5; Do[If[c - a == 100, AppendTo[s, b]; Print[{a, b, c}]]; a = b; b = c; c = NextPrime[c], {10^5}]; s
%t Select[Partition[Prime[Range[151000]],3,1],#[[3]]-#[[1]]==100&][[;;,2]] (* _Harvey P. Dale_, Jul 22 2024 *)
%o (PARI) p=2;q=3;forprime(r=5,1e6,if(r-p==100,print1(q", "));p=q;q=r) \\ _Charles R Greathouse IV_, Nov 14 2012
%Y Cf. A166251, A217561, A217566, A217577.
%K nonn
%O 1,1
%A _Zak Seidov_, Oct 08 2012