login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217549
The Berndt-type sequence number 8 for the argument 2*Pi/13.
3
0, -1, 21, 85, 365, -5707, -24935, -108872, 1713705, 7480420, 32652893, -513913649, -2243303605, -9792325686, 154118686736, 672748988550, 2936640671285, -46218967738367, -201752069488280, -880675175822422, 13860700755359325, 60503840705600655, 264107479466296733
OFFSET
0,3
COMMENTS
a(n) is defined by the relation A217548(n) + a(n)*sqrt(13)= A(2*n)*2*13^(floor((n+1)/3)/2), where A(n) = sqrt((13-3*sqrt(13))/2)*A(n-1) + (sqrt(13)-3)*A(n-2)/2 - sqrt((13-3*sqrt(13))/26)*A(n-3), with A(-1) = sqrt((13-3*sqrt(13))/2), A(0) = 3, A(1) = sqrt((13-3*sqrt(13))/26).
However the basic sequence A(n) is defined by the relation A(n) = s(1)^(-n) + s(3)^(-n) + s(9)^(-n), where s(j) := 2*sin(2*Pi*j/13). The sequence with respective positive powers is discussed in A216508 (see sequence Y(n) in Comments to A216508).
The numbers of other Berndt-type sequences for the argument 2*Pi/13 in Crossrefs are given.
REFERENCES
R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
LINKS
R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, (abstract) see p. 15.
EXAMPLE
We have A(1) = A(-1) = sqrt((13-3*sqrt(13))/2), A(2) = (7-sqrt(13))/2, A(3) = (2*sqrt(13)-3)*sqrt((13-3*sqrt(13))/26), A(4) = (21-5*sqrt(13))/2, A(5) = ((13*sqrt(13)-37)/2)*sqrt((13-3*sqrt(13))/26), 2*sqrt(13)*A(6) = -295 + 85*sqrt(13), and 2*sqrt(13)*(A(6) - 4*A(4)) + 2*A(2) = -28. Furthermore it can be verified that -a(5)/13 - a(4) - a(3) = A217548(5)/13 + A217548(4) + A217548(3) = -11.
KEYWORD
sign
AUTHOR
Roman Witula, Oct 06 2012
STATUS
approved