|
|
A217501
|
|
Primes of the form 2*n^2 + 78*n + 37.
|
|
9
|
|
|
37, 577, 1657, 2089, 2557, 3061, 4177, 4789, 5437, 6121, 6841, 8389, 12889, 17137, 18289, 19477, 21961, 27361, 36541, 38197, 41617, 45181, 47017, 48889, 54721, 56737, 58789, 74161, 78877, 83737, 88741, 91297, 93889, 96517, 99181, 113041, 121789, 124777
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1447 is a square. - Vincenzo Librandi, Apr 09 2015
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..3000
|
|
MATHEMATICA
|
Select[Table[2 n^2 + 78 n + 37, {n, 0, 600}], PrimeQ]
|
|
PROG
|
(Magma) [a: n in [0..600] | IsPrime(a) where a is 2*n^2+78*n+37];
|
|
CROSSREFS
|
Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), this sequence (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002144.
Sequence in context: A221292 A231514 A156226 * A133998 A231381 A056217
Adjacent sequences: A217498 A217499 A217500 * A217502 A217503 A217504
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Oct 09 2012
|
|
STATUS
|
approved
|
|
|
|