login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217502
E.g.f.: exp(sec(x)-1) = 1 + Sum_{n>0} a(n)*x^(2*n)/(2*n)!.
6
1, 1, 8, 151, 5123, 271396, 20605133, 2116186801, 282013329788, 47257934281891, 9716069206252163, 2402866414155189016, 703288162788887287433, 240323111593250975343601, 94776477297941909597367248, 42710529437686482677512782271
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(sec(x)-1) = 1 + Sum_{n>0} a(n)*x^(2*n)/(2*n)!.
a(n) = Sum_{m=1..(2*n)} (Sum_{k=m..(2*n)} binomial(k-1,m-1)*Sum_{j=(2*k)..(2*n)} binomial(j-1,2*k-1)*(j)!*2^(m-j)*(-1)^(n+k+j) * stirling2(2*n,j))))/m!), n>0, a(0)=1.
a(n) ~ 2^(4*n+1/2)* exp(4*sqrt(n)/sqrt(Pi)-2*n-1+1/Pi)* n^(2*n-1/4) / Pi^(2*n+1/4). - Vaclav Kotesovec, Sep 24 2013
a(n) = Sum_{i=0..(n-1)} binomial(2*n-1,2*i+1)*z(i)*a(n-i-1))), a(0)=1, where z(n) = euler(n+1) - secant numbers (A000364). - Vladimir Kruchinin, Mar 01 2015
MAPLE
a := proc(n) option remember; if n=0 then 1 else add((-1)^i*binomial(2*n-1, 2*i-1)* euler(2*i)*a(n-i), i=1..n) fi end: seq(a(n), n=0..15); # Peter Luschny, Mar 08 2015
MATHEMATICA
a[n_] := Sum[ (Sum[ Binomial[k - 1, m - 1]* Sum[ Binomial[j - 1, 2*k - 1]*(j)!*2^(m - j)*(-1)^(n + k + j)*StirlingS2[2*n, j], {j, 2*k, 2*n}], {k, m, 2*n}])/m!, {m, 1, 2*n}]; a[0] = 1; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 22 2013 *)
Table[(2*n)!*SeriesCoefficient[E^(1/Cos[x]-1), {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 24 2013 *)
With[{nn = 100}, CoefficientList[Series[Exp[Sec[x] - 1], {x, 0, nn}],
x] Range[0, nn]!][[;; ;; 2]] (* G. C. Greubel, May 31 2017 *)
PROG
(Maxima) a(n):=if n=0 then 1 else sum((sum(binomial(k-1, m-1)*sum(binomial(j-1, 2*k-1)*(j)!*2^(m-j)*(-1)^(n+k+j)*stirling2(2*n, j), j, 2*k, 2*n), k, m, 2*n))/m!, m, 1, 2*n);
(Maxima)
z(n):=(2*n+2)!*(coeff(taylor(sec(x), x, 0, 20), x, 2*(n+1)));
a(n):=if n=0 then 1 else (sum(binomial(2*n-1, 2*i+1)*z(i)*a(n-i-1), i, 0, n-1)); /* Vladimir Kruchinin, Mar 01 2015 */
(PARI) a(n) = {n = 2*n+2; xx = x + O(x^n); polcoeff(serlaplace(exp(1/cos(xx)-1)), n); } \\ Michel Marcus, Mar 03 2015
CROSSREFS
Cf. A000364.
Sequence in context: A220559 A264642 A300872 * A377593 A229955 A249481
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Oct 05 2012
STATUS
approved