login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176549 Primes of the form 2*n^2+6*n+1. 15
37, 109, 541, 757, 1009, 1297, 1621, 2377, 6841, 7561, 8317, 9109, 11701, 12637, 15661, 16741, 19009, 23977, 25309, 28081, 34057, 38917, 40609, 42337, 44101, 47737, 51517, 55441, 57457, 59509, 65881, 70309, 72577, 82009, 84457, 99901 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.

2*a(n) + 7 is a square. - Vincenzo Librandi, Apr 09 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

MATHEMATICA

Select[Table[2 n^2 + 6 n + 1, {n, 2000}], PrimeQ] (* Vincenzo Librandi, Jul 26 2012 *)

PROG

(MAGMA) [a: n in [0..300] | IsPrime(a) where a is 2*n^2+6*n+1]; // Vincenzo Librandi, Jul 26 2012

CROSSREFS

Primes in A059993.

Subsequence of A093838.

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): this sequence (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).

Sequence in context: A257117 A033215 A195316 * A118536 A003164 A304612

Adjacent sequences:  A176546 A176547 A176548 * A176550 A176551 A176552

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Apr 20 2010

EXTENSIONS

Removed an obviously incorrect part of the definition - R. J. Mathar, Apr 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 07:53 EST 2020. Contains 338607 sequences. (Running on oeis4.)