OFFSET
1,2
COMMENTS
Number of digits in Lucas(k) is equal to floor(1 + k*log_10((1+sqrt(5))/2)).
MATHEMATICA
k = 0; Join[{1}, Table[While[d = IntegerDigits[LucasL[k]]; ! MemberQ[Partition[Differences[d], n - 1, 1], Table[0, {n - 1}]], k++]; Length[d], {n, 2, 8}]] (* T. D. Noe, Oct 02 2012 *)
PROG
(Python)
def A217192(n):
....if n == 1:
........return 1
....else:
........l, y, x = [str(d)*n for d in range(10)], 2, 1
........for m in range(1, 10**9):
............s = str(x)
............for k in l:
................if k in s:
....................return len(s)
............y, x = x, y+x
........return 'search limit reached'
# Chai Wah Wu, Dec 17 2014
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
V. Raman, Sep 27 2012
EXTENSIONS
a(11) from Chai Wah Wu, Dec 17 2014
a(12)-a(16) from Nick Hobson, Feb 04 2024
STATUS
approved