login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217144
Alternating sums of squares of Bell numbers (A000110).
1
1, 0, 4, 21, 204, 2500, 38709, 730420, 16409180, 430786429, 13019414196, 447437830704, 17306961847705, 746907935199264, 35695643204860420, 1876878693983656605, 107956500727342113004, 6758630146906528885412, 458470139353155531447869
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k)^2.
PROG
(Maxima) makelist(sum((-1)^(n-k)*belln(k)^2, k, 0, n), n, 0, 30);
(Python)
from itertools import accumulate, islice
def A217144_gen(): # generator of terms
yield 1
blist, b, c, f = (1, ), 1, 1, 1
while True:
blist = list(accumulate(blist, initial=(b:=blist[-1])))
yield (f:=-f)*(c := c+f*b**2)
A217144_list = list(islice(A217144_gen(), 20)) # Chai Wah Wu, Jun 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Sep 27 2012
STATUS
approved