login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217098
Greatest binary palindrome (cf. A006995) with n binary digits such that the number of contiguous palindromic bit patterns is minimal.
2
1, 3, 5, 9, 27, 51, 107, 165, 403, 843, 1675, 2661, 5709, 13515, 27083, 39513, 108235, 208083, 432843, 682341, 1664211, 3461835, 6922955, 10918245, 23434061, 55390923, 110785227, 161912409, 443134667, 852178131, 1772532427, 2795133285, 6817395923, 14180201163, 28360356555
OFFSET
1,2
COMMENTS
Subsequence of A217099.
a(n) is the greatest binary palindrome with n binary digits which meets the minimal possible number of palindromic substrings for that number of digits.
LINKS
FORMULA
a(n) = max(p | p is binary palindrome with n binary digits and A206925(p) = min(A206925(q) | q is binary palindrome with n binary digits)).
a(n) = A006995(j), where j := j(n) = max(k > A206915(2^(n-1)) | A206924(k) = min(A206925(A006995(i)) | i > A206915(2^(n-1)))).
a(n) = max(p | p is binary palindrome with n binary digits and A206925(p) = 2*(n-1) + floor((n-3)/2)).
EXAMPLE
a(1) = 1, since 1 is the largest binary palindrome with 1 palindromic substring (=1) which is the minimum for binary palindromes with 1 place.
a(3) = 5, since 5=101_2 is the largest binary palindrome with 4 palindromic substrings which is the minimum for binary palindromes with 3 places.
a(6) = 51, since 51=110011_2 is the largest binary palindrome with 11 palindromic substrings which is the minimum for binary palindromes with 6 places.
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Jan 23 2013
STATUS
approved