login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217017
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n * cosh(n^2*x).
1
1, 1, 2, 9, 216, 4985, 100560, 2957857, 136497536, 6610096593, 345956417280, 23296776506201, 1836435977198592, 154494426214284169, 14810872713498208256, 1636841993390984400945, 196590054470072062279680, 25774473091662477588656417, 3765032120872059152077357056
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n * (exp(n^2*x) + exp(-n^2*x))/2.
E.g.f.: A(x) = (B(x) + C(x))/2 where
B(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (1 - x*exp((4*k-3)*x)) / (1 - x*exp((4*k-1)*x)),
C(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (exp((4*k-3)*x) - x) / (exp((4*k-1)*x) - x).
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 216*x^4/4! + 4985*x^5/5! +...
where
A(x) = 1 + x*cosh(x) + x^2*cosh(4*x) + x^3*cosh(9*x) + x^4*cosh(16*x) +...
Also, A(x) = (B(x) + C(x))/2 where
B(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(3*x)) +
x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(5*x))/((1-x*exp(3*x))*(1-x*exp(7*x))) +
x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(5*x))*(1-x*exp(9*x))/((1-x*exp(3*x))*(1-x*exp(7*x))*(1-x*exp(11*x))) +...
and
C(x) = 1 + x*exp(x)*(exp(x)-x)/(exp(3*x)-x) +
x^2*exp(2*x)*(exp(x)-x)*(exp(5*x)-x)/((exp(3*x)-x)*(exp(7*x)-x)) +
x^3*exp(3*x)*(exp(x)-x)*(exp(5*x)-x)*(exp(9*x)-x)/((exp(3*x)-x)*(exp(7*x)-x)*(exp(11*x)-x)) +...
Also, the above B(x) and C(x) are given by the continued fractions:
B(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...))))))))),
C(x) = 1/(1 - x/(q - (1-q^2)*x/(q^2 - x/(q^3 - (1-q^4)*x/(q^4 - x/(q^5 - (1-q^6)*x/(q^6 - x/(q^7 - (1-q^8)*x/(q^8 - ...))))))))),
where q = exp(x), due to a partial elliptic theta function identity.
PROG
(PARI) {a(n)=local(A=1+x); A=1+sum(m=1, n, x^m*cosh(m^2*x+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
Sequence in context: A069649 A111832 A114563 * A112311 A067564 A267408
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 23 2012
STATUS
approved