login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A(x) = Sum_{n>=0} x^n * cosh(n^2*x).
1

%I #5 Sep 23 2012 18:34:31

%S 1,1,2,9,216,4985,100560,2957857,136497536,6610096593,345956417280,

%T 23296776506201,1836435977198592,154494426214284169,

%U 14810872713498208256,1636841993390984400945,196590054470072062279680,25774473091662477588656417,3765032120872059152077357056

%N E.g.f. satisfies: A(x) = Sum_{n>=0} x^n * cosh(n^2*x).

%F E.g.f. satisfies: A(x) = Sum_{n>=0} x^n * (exp(n^2*x) + exp(-n^2*x))/2.

%F E.g.f.: A(x) = (B(x) + C(x))/2 where

%F B(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (1 - x*exp((4*k-3)*x)) / (1 - x*exp((4*k-1)*x)),

%F C(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (exp((4*k-3)*x) - x) / (exp((4*k-1)*x) - x).

%e E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 216*x^4/4! + 4985*x^5/5! +...

%e where

%e A(x) = 1 + x*cosh(x) + x^2*cosh(4*x) + x^3*cosh(9*x) + x^4*cosh(16*x) +...

%e Also, A(x) = (B(x) + C(x))/2 where

%e B(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(3*x)) +

%e x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(5*x))/((1-x*exp(3*x))*(1-x*exp(7*x))) +

%e x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(5*x))*(1-x*exp(9*x))/((1-x*exp(3*x))*(1-x*exp(7*x))*(1-x*exp(11*x))) +...

%e and

%e C(x) = 1 + x*exp(x)*(exp(x)-x)/(exp(3*x)-x) +

%e x^2*exp(2*x)*(exp(x)-x)*(exp(5*x)-x)/((exp(3*x)-x)*(exp(7*x)-x)) +

%e x^3*exp(3*x)*(exp(x)-x)*(exp(5*x)-x)*(exp(9*x)-x)/((exp(3*x)-x)*(exp(7*x)-x)*(exp(11*x)-x)) +...

%e Also, the above B(x) and C(x) are given by the continued fractions:

%e B(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...))))))))),

%e C(x) = 1/(1 - x/(q - (1-q^2)*x/(q^2 - x/(q^3 - (1-q^4)*x/(q^4 - x/(q^5 - (1-q^6)*x/(q^6 - x/(q^7 - (1-q^8)*x/(q^8 - ...))))))))),

%e where q = exp(x), due to a partial elliptic theta function identity.

%o (PARI) {a(n)=local(A=1+x); A=1+sum(m=1, n, x^m*cosh(m^2*x+x*O(x^n))); n!*polcoeff(A, n)}

%o for(n=0, 21, print1(a(n), ", "))

%Y Cf. A194017, A193421.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 23 2012