|
|
A216945
|
|
Numbers k such that k-2, k^2-2, k^3-2, k^4-2 and k^5-2 are all prime.
|
|
1
|
|
|
15331, 289311, 487899, 798385, 1685775, 1790991, 1885261, 1920619, 1967925, 2304805, 2479735, 3049201, 3114439, 3175039, 3692065, 4095531, 4653649, 5606349, 5708235, 6113745, 6143235, 6697425, 7028035, 7461601, 8671585, 8997121, 9260131, 10084915, 10239529
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
k^6-2 is also prime for k = 1685775, 4095531, 4653649, 5606349, 13219339, 13326069, 18439561, ...
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Select[Range[20000000], And@@PrimeQ/@(Table[n^i-2, {i, 1, 5}]/.n->#)&]
Select[Prime[Range[680000]]+2, AllTrue[#^Range[2, 5]-2, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 11 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|