login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216534
Number of cycles in all partial functions on {1,2,...,n}.
1
0, 1, 7, 62, 696, 9564, 156115, 2957072, 63822024, 1547005920, 41624943383, 1231358443776, 39728327494064, 1388514386058240, 52264389341358675, 2108028274231109632, 90708364554174003184, 4147927057963872055296, 200876745049904503019271, 10270802025081264529408000, 552906921706607979733097736
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(T(x))*log(1/(1-T(x)))/(1-T(x)), where T(x) is the e.g.f. for A000169.
a(n) = Sum_{k>0} A216520(n,k)*k.
a(n) ~ exp(1)/2 * n^n * log(n) * (1 + (gamma+log(2))/log(n) - 2*sqrt(2*Pi)/(3*sqrt(n)*log(n))), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 30 2013
MAPLE
T:= -LambertW(-x):
a:= n-> n! *coeff(series(exp(T)*log(1/(1-T))/(1-T), x, n+1), x, n):
seq (a(n), n=0..20); # Alois P. Heinz, Sep 08 2012
MATHEMATICA
nn=20; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; a=Exp[t]/(1-t)^y; b=D[a, y]/.y->1; Range[0, nn]!CoefficientList[Series[b, {x, 0, nn}], x]
CoefficientList[Series[Log[1+LambertW[-x]]/(x*(1+1/LambertW[-x])), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
PROG
(PARI) x='x+O('x^30); concat([0], Vec(serlaplace( log(1+lambertw(-x))/( x*(1+ 1/lambertw(-x))) ))) \\ G. C. Greubel, Sep 04 2018
CROSSREFS
Sequence in context: A289212 A060005 A055066 * A167550 A304895 A161201
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Sep 08 2012
STATUS
approved