login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216292
Values of k such that there is exactly one prime between 10k and 10k + 9.
6
9, 11, 12, 14, 18, 21, 24, 29, 30, 36, 39, 41, 42, 45, 47, 48, 55, 58, 63, 66, 68, 69, 71, 72, 74, 77, 78, 79, 80, 81, 83, 86, 87, 90, 92, 93, 95, 96, 98, 100, 102, 104, 105, 108, 111, 116, 117, 119, 120, 124, 125, 131, 137, 138, 139, 140, 144, 147, 151, 152
OFFSET
1,1
FORMULA
a(n) ~ 0.1 n log n. - Charles R Greathouse IV, Sep 07 2012
a(n) = floor(A078494(n) / 10). - Charles R Greathouse IV, Sep 07 2012
EXAMPLE
36 is in the sequence because between 360 and 369 there is exactly one prime: 367. [Bruno Berselli, Sep 04 2012]
MATHEMATICA
t = {}; Do[ps = Select[Range[10*n, 10*n + 9], PrimeQ]; If[Length[ps] == 1, AppendTo[t, n]], {n, 0, 199}]; t (* T. D. Noe, Sep 03 2012 *)
Select[Range[200], PrimePi[10#+9]-PrimePi[10#]==1&] (* Harvey P. Dale, Feb 04 2015 *)
PROG
(Magma) [n: n in [1..200] | IsOne(#PrimesInInterval(10*n, 10*n+9))]; // Bruno Berselli, Sep 04 2012
(PARI) is(n)=isprime(10*n+1)+isprime(10*n+3)+isprime(10*n+7)+isprime(10*n+9)==1 \\ Charles R Greathouse IV, Sep 07 2012
(Python)
from itertools import count, islice
from sympy import isprime
def A216292_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k: sum(int(isprime(10*k+i)) for i in (1, 3, 7, 9)) == 1, count(max(1, startvalue)))
A216292_list = list(islice(A216292_gen(), 30)) # Chai Wah Wu, Sep 23 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
V. Raman, Sep 03 2012
STATUS
approved