login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216188
Number of unordered pairs of anagrammatic (positive) integers adding to n.
1
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
OFFSET
1,44
COMMENTS
Two positive integers are here defined as "anagrammatic" if (in base 10) they have the same number of 0 digits, 1 digits, 2 digits, ..., 9 digits. Thus, 123 and 231 are anagrammatic, but not 301 and 013, as leading zeros are omitted.
LINKS
Christian Schulz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
EXAMPLE
For n = 88, the a(88) = 4 pairs are {17,71}, {26,62}, {35,53}, and {44,44}. For n = 609, the a(609) = 1 pair is {237,372}.
MAPLE
getDigit := (n, k) -> floor(n/10^k) mod 10; getMaxDigit := n -> floor(log10(n)) + 1; getDigitMultiset := n -> convert([seq(getDigit(n, k), k=0..getMaxDigit(n)-1)], multiset); isAnagram := (m, n) -> evalb(getDigitMultiset(m) = getDigitMultiset(n)); A216188 := n -> convert([seq(eval(isAnagram(k, n-k), [true=1, false=0]), k=1..floor(n/2))], `+`); seq(A216188(n), n=1..50)
MATHEMATICA
IsAnagram[x_, y_, b_: 10] := Sort[Permutations[IntegerDigits[x, b]]] == Sort[Permutations[IntegerDigits[y, b]]]; FindAnagramSums[n_, b_: 10] := Select[Table[{k, n - k}, {k, 0, Floor[n/2]}], IsAnagram[#[[1]], #[[2]], b] &]; Table[Length[FindAnagramSums[n]], {n, 1, 200}]
CROSSREFS
Sequence in context: A292262 A160804 A085854 * A117145 A338822 A083912
KEYWORD
nonn,base
AUTHOR
Christian Schulz, Mar 11 2013
STATUS
approved