OFFSET
1,44
COMMENTS
Two positive integers are here defined as "anagrammatic" if (in base 10) they have the same number of 0 digits, 1 digits, 2 digits, ..., 9 digits. Thus, 123 and 231 are anagrammatic, but not 301 and 013, as leading zeros are omitted.
LINKS
Christian Schulz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
EXAMPLE
For n = 88, the a(88) = 4 pairs are {17,71}, {26,62}, {35,53}, and {44,44}. For n = 609, the a(609) = 1 pair is {237,372}.
MAPLE
getDigit := (n, k) -> floor(n/10^k) mod 10; getMaxDigit := n -> floor(log10(n)) + 1; getDigitMultiset := n -> convert([seq(getDigit(n, k), k=0..getMaxDigit(n)-1)], multiset); isAnagram := (m, n) -> evalb(getDigitMultiset(m) = getDigitMultiset(n)); A216188 := n -> convert([seq(eval(isAnagram(k, n-k), [true=1, false=0]), k=1..floor(n/2))], `+`); seq(A216188(n), n=1..50)
MATHEMATICA
IsAnagram[x_, y_, b_: 10] := Sort[Permutations[IntegerDigits[x, b]]] == Sort[Permutations[IntegerDigits[y, b]]]; FindAnagramSums[n_, b_: 10] := Select[Table[{k, n - k}, {k, 0, Floor[n/2]}], IsAnagram[#[[1]], #[[2]], b] &]; Table[Length[FindAnagramSums[n]], {n, 1, 200}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Christian Schulz, Mar 11 2013
STATUS
approved