login
A216190
Abelian complexity function of tribonacci word (A080843).
2
3, 3, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4
OFFSET
1,1
COMMENTS
For all n, a(n) equals 3,4,5,6, or 7.
The values 3,4,5,6, and 7 are all obtained infinitely often.
The first 6 occurs when n=342. The first 7 occurs when n=3914.
REFERENCES
G. Richomme, K. Saari, L. Q. Zamboni, Balance and Abelian Complexity of the Tribonacci word, Adv. Appl. Math. 45 (2010) 212-231.
LINKS
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
Ondrej Turek, Abelian complexity and Abelian co-decomposition, arXiv 1201:2109, Jan. 11, 2012.
O. Turek, Abelian Complexity Function of the Tribonacci Word, J. Int. Seq. 18 (2015) # 15.3.4
CROSSREFS
Cf. A080843.
Sequence in context: A236442 A046537 A167596 * A267592 A243341 A238856
KEYWORD
nonn,easy
AUTHOR
Nathan Fox, Mar 11 2013
STATUS
approved