

A216190


Abelian complexity function of tribonacci word (A080843).


2



3, 3, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For all n, a(n) equals 3,4,5,6, or 7.
The values 3,4,5,6, and 7 are all obtained infinitely often.
The first 6 occurs when n=342. The first 7 occurs when n=3914.


REFERENCES

G. Richomme, K. Saari, L. Q. Zamboni, Balance and Abelian Complexity of the Tribonacci word, Adv. Appl. Math. 45 (2010) 212231.


LINKS

Table of n, a(n) for n=1..99.
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
Nathan Fox, Python code to generate sequence
Ondrej Turek, Abelian complexity and Abelian codecomposition, arXiv 1201:2109, Jan. 11, 2012.
O. Turek, Abelian Complexity Function of the Tribonacci Word, J. Int. Seq. 18 (2015) # 15.3.4


CROSSREFS

Cf. A080843.
Sequence in context: A236442 A046537 A167596 * A267592 A243341 A238856
Adjacent sequences: A216187 A216188 A216189 * A216191 A216192 A216193


KEYWORD

nonn,easy


AUTHOR

Nathan Fox, Mar 11 2013


STATUS

approved



