login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216073 The list of the a(n)-values in the common solutions to k+1=b^2 and 6*k+1=a^2. 1
1, 7, 17, 71, 169, 703, 1673, 6959, 16561, 68887, 163937, 681911, 1622809, 6750223, 16064153, 66820319, 159018721, 661452967, 1574123057, 6547709351, 15582211849, 64815640543, 154247995433, 641608696079, 1526897742481, 6351271320247, 15114729429377, 62871104506391 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The equations are equivalent to the Pell equation a^2 - 6*b^2 = -5 with the 2 fundamental solutions (1;1) and (7;3) and the solution (5;2) for the unit form.

The associated b(n) are in A080806.

A181442(n) = (A080806(n) + 1)/2.

A180483(n) = (a(n) + 5)/2.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).

FORMULA

a(n) = 10*a(n-2) - a(n-4).

a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5).

G.f.: x*(1+7*x+7*x^2+x^3)/(1-10*x^2+x^4).

a(2*n+1) = ((1+r)*(5+2*r)^n + (1-r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.

a(2*n+2) = ((7+3*r)*(5+2*r)^n + (7-3*r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.

a(n) = -((5-2*r)^(1/4)*((2*r+5)^((-1)^n/4+n/2)*(-1)^n - r*(2*r+5)^((-1)^n/4+n/2)) + (2*r+5)^(1/4)*((5-2*r)^((-1)^n/4+n/2)*(-1)^n + (5-2*r)^((-1)^n/4+n/2)*r))/(2*(5-2*r)^(1/4)*(2*r+5)^(1/4)) with r=sqrt(6) and 1<=n. - Alexander R. Povolotsky, Sep 01 2012

a(n) = b(n) +7*b(n-1) +7*b(n-2) +b(n-3), where b(n) = (1/2)*(1 +(-1)^n)* ChebyshevU(n/2, 5). - G. C. Greubel, Apr 28 2022

MAPLE

a(1)=1: a(2)=7: a(3)=17: a(4)=71:

for n from 5 to 20 do

a(n)=10*a(n-2)-a(n-4):

printf("%9d%20d\n", n, a(n)):

end do:

MATHEMATICA

LinearRecurrence[{0, 10, 0, -1}, {1, 7, 17, 71}, 50] (* G. C. Greubel, Feb 22 2017 *)

PROG

(PARI)

a(n) = if(n<1, 0, if(n<5, [1, 7, 17, 71][n], 10*a(n-2)-a(n-4) ) );

/* Joerg Arndt, Sep 03 2012 */

(SageMath)

def b(n): return (1/2)*(1+(-1)^n)*chebyshev_U(n//2, 5)

def A216073(n): return b(n) +7*b(n-1) +7*b(n-2) +b(n-3)

[A216073(n) for n in (0..50)] # G. C. Greubel, Apr 28 2022

CROSSREFS

Cf. A080806, A180483, A181442.

Sequence in context: A242907 A034054 A120876 * A086870 A107693 A217717

Adjacent sequences: A216070 A216071 A216072 * A216074 A216075 A216076

KEYWORD

nonn,easy

AUTHOR

Paul Weisenhorn, Sep 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:00 EST 2022. Contains 358648 sequences. (Running on oeis4.)