login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215915
E.g.f.: exp( Sum_{n>=1} A000041(n)*x^n/n ), where A000041(n) is the number of partitions of n.
6
1, 1, 3, 13, 79, 579, 5209, 53347, 628257, 8223481, 119473291, 1893056781, 32677209103, 606930554923, 12109058077809, 257638964244739, 5830359141736129, 139638723615395697, 3531794326401241747, 93977250969358226701, 2625647922067519041231, 76809884197769914248211
OFFSET
0,3
COMMENTS
Note that exp( Sum_{k>=1} A183610(n,k)*x^k/k ) is an integer series for row n>=1; the partition numbers, which forms row 0 of table A183610, is the exception.
LINKS
FORMULA
a(n) = (n-1)!*sum(p(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1), a(0)=1, where p(i) is the number of partitions of n. - Vladimir Kruchinin, Feb 27 2015
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 79*x^4/4! + 579*x^5/5! + 5209*x^6/6! + ...
such that log(A(x)) = x + 2*x^2/2 + 3*x^3/3 + 5*x^4/4 + 7*x^5/5 + 11*x^6/6 + 15*x^7/7 + 22*x^8/8 + ... + A000041(n)*x^n/n + ...
MATHEMATICA
nmax = 20; CoefficientList[Series[E^Sum[PartitionsP[k]*x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n+1, numbpart(m)*x^m/m+x*O(x^n))), n)}
for(n=0, 31, print1(a(n), ", "))
(Maxima)
a(n):=if n=0 then 1 else (n-1)!*sum(num_partitions(i+1)*a(n-i-1)/(n-i-1)!, i, 0, n-1); /* Vladimir Kruchinin, Feb 27 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 26 2012
STATUS
approved