login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215916
The total number of components (cycles) in all alignments.
4
0, 1, 5, 32, 254, 2414, 26746, 338568, 4820952, 76270032, 1327263024, 25196689968, 518190651744, 11476753967184, 272339818023984, 6893370154797312, 185387657162396544, 5279022594143270784, 158674547929990485888, 5020389181983702415104, 166784921186052433648896
OFFSET
0,3
COMMENTS
An alignment is a sequence of cycles of an n-permutation, cf. A007840.
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 180.
FORMULA
a(n) = Sum_{k=1...n} s(n,k)*k!*k where s(n,k) is the unsigned Stirling number of the first kind (A132393).
E.g.f.: log(1/(1-x))/(1-log(1/(1-x)))^2.
a(n) ~ n!*n*exp(n)/(exp(1)-1)^(n+2) . - Vaclav Kotesovec, Sep 24 2013
E.g.f.: Sum_{k>=0} k * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022
MATHEMATICA
nn = 20; a = Log[1/(1 - x)]; Range[0, nn]! CoefficientList[
D[Series[1/(1 - y a), {x, 0, nn}], y] /. y -> 1, x]
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*(-log(1-x))^k)))) \\ Seiichi Manyama, Apr 22 2022
CROSSREFS
Sequence in context: A208046 A198598 A369785 * A068102 A166993 A328055
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Aug 27 2012
STATUS
approved