OFFSET
0,3
COMMENTS
An alignment is a sequence of cycles of an n-permutation, cf. A007840.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..417
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 180.
FORMULA
a(n) = Sum_{k=1...n} s(n,k)*k!*k where s(n,k) is the unsigned Stirling number of the first kind (A132393).
E.g.f.: log(1/(1-x))/(1-log(1/(1-x)))^2.
a(n) ~ n!*n*exp(n)/(exp(1)-1)^(n+2) . - Vaclav Kotesovec, Sep 24 2013
E.g.f.: Sum_{k>=0} k * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022
MATHEMATICA
nn = 20; a = Log[1/(1 - x)]; Range[0, nn]! CoefficientList[
D[Series[1/(1 - y a), {x, 0, nn}], y] /. y -> 1, x]
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*(-log(1-x))^k)))) \\ Seiichi Manyama, Apr 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Aug 27 2012
STATUS
approved