login
A215916
The total number of components (cycles) in all alignments.
4
0, 1, 5, 32, 254, 2414, 26746, 338568, 4820952, 76270032, 1327263024, 25196689968, 518190651744, 11476753967184, 272339818023984, 6893370154797312, 185387657162396544, 5279022594143270784, 158674547929990485888, 5020389181983702415104, 166784921186052433648896
OFFSET
0,3
COMMENTS
An alignment is a sequence of cycles of an n-permutation, cf. A007840.
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 180.
FORMULA
a(n) = Sum_{k=1...n} s(n,k)*k!*k where s(n,k) is the unsigned Stirling number of the first kind (A132393).
E.g.f.: log(1/(1-x))/(1-log(1/(1-x)))^2.
a(n) ~ n!*n*exp(n)/(exp(1)-1)^(n+2) . - Vaclav Kotesovec, Sep 24 2013
E.g.f.: Sum_{k>=0} k * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022
MATHEMATICA
nn = 20; a = Log[1/(1 - x)]; Range[0, nn]! CoefficientList[
D[Series[1/(1 - y a), {x, 0, nn}], y] /. y -> 1, x]
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N, k*(-log(1-x))^k)))) \\ Seiichi Manyama, Apr 22 2022
CROSSREFS
Sequence in context: A208046 A198598 A369785 * A068102 A166993 A328055
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Aug 27 2012
STATUS
approved