login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp( Sum_{n>=1} A000041(n)*x^n/n ), where A000041(n) is the number of partitions of n.
6

%I #20 Oct 18 2017 05:46:02

%S 1,1,3,13,79,579,5209,53347,628257,8223481,119473291,1893056781,

%T 32677209103,606930554923,12109058077809,257638964244739,

%U 5830359141736129,139638723615395697,3531794326401241747,93977250969358226701,2625647922067519041231,76809884197769914248211

%N E.g.f.: exp( Sum_{n>=1} A000041(n)*x^n/n ), where A000041(n) is the number of partitions of n.

%C Note that exp( Sum_{k>=1} A183610(n,k)*x^k/k ) is an integer series for row n>=1; the partition numbers, which forms row 0 of table A183610, is the exception.

%H Seiichi Manyama, <a href="/A215915/b215915.txt">Table of n, a(n) for n = 0..432</a>

%F a(n) = (n-1)!*sum(p(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1), a(0)=1, where p(i) is the number of partitions of n. - _Vladimir Kruchinin_, Feb 27 2015

%e G.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 79*x^4/4! + 579*x^5/5! + 5209*x^6/6! + ...

%e such that log(A(x)) = x + 2*x^2/2 + 3*x^3/3 + 5*x^4/4 + 7*x^5/5 + 11*x^6/6 + 15*x^7/7 + 22*x^8/8 + ... + A000041(n)*x^n/n + ...

%t nmax = 20; CoefficientList[Series[E^Sum[PartitionsP[k]*x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Oct 18 2017 *)

%o (PARI) {a(n)=n!*polcoeff(exp(sum(m=1,n+1,numbpart(m)*x^m/m+x*O(x^n))),n)}

%o for(n=0,31,print1(a(n),", "))

%o (Maxima)

%o a(n):=if n=0 then 1 else (n-1)!*sum(num_partitions(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1); /* _Vladimir Kruchinin_, Feb 27 2015 */

%Y Cf. A183610, A000041, A058892, A293731, A293839.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Aug 26 2012