OFFSET
0,3
COMMENTS
x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..150
FORMULA
E.g.f.: 1/(1 - x*T(x)) where T(x) is the e.g.f. for A000169.
a(n) = n! * Sum_{i=0..floor(n/2)} i*(n-i)^(n-2*i-1)/(n-2*i)! for n>0, a(0) = 1. - Alois P. Heinz, Aug 22 2012
a(n) ~ exp(1)/(exp(1)-1)^2 * n^(n-1). - Vaclav Kotesovec, Sep 30 2013
EXAMPLE
a(2) = 2 because we have: (1->1,2->1), (1->2,2->2).
MAPLE
a:= n-> `if`(n=0, 1, n! *add(i*(n-i)^(n-2*i-1)/(n-2*i)!, i=0..n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 22 2012
MATHEMATICA
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[1/(1 - x t) , {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Aug 22 2012
STATUS
approved