login
A215139
a(n) = (a(n-1) - a(n-3))*7^((1+(-1)^n)/2) with a(6)=5, a(7)=4, a(8)=22.
1
5, 4, 22, 17, 91, 69, 364, 273, 1428, 1064, 5537, 4109, 21315, 15778, 81683, 60368, 312130, 230447, 1190553, 878423, 4535832, 3345279, 17267992, 12732160, 65708167, 48440175, 249956105, 184247938, 950654341, 700698236, 3615152086, 2664497745, 13746596563, 10131444477
OFFSET
6,1
COMMENTS
The Ramanujan-type sequence the number 9 for the argument 2*Pi/7. The sequence is connecting with the following decomposition: (s(4)/s(1))^(1/3)*s(1)^n + (s(1)/s(2))^(1/3)*s(2)^n + (s(2)/s(4))^(1/3)*s(4)^n = x(n)*(4-3*7^(1/3))^(1/3) + y(n)*(11-3*49^(1/3))^(1/3), where s(j) := sin(2*Pi*j/7), x(0)=1, x(1)=-7^(1/6)/2, x(2)=y(0)=y(1)=0, y(2)=7^(1/3)/4 and X(n)=sqrt(7)*(X(n-1)-X(n-3)) for every n=3,4,..., and X=x or X=y. It could be deduced the formula 4*y(n) = a(n)*7^(1/3 + (3+(-1)^n)/4), which implies a(0)=0, a(1)= 0, a(2)= 1/7, a(3)=1/7, a(4)=1, a(5)=6/7, i.e., A163260(n)=7*a(n) for every n=0,1,...,5. The sequence a(n) is discussed in third Witula paper.
REFERENCES
R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
LINKS
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
FORMULA
G.f.: -x*(1+x)*(6*x^4+x^3-12*x^2-x+5) / ( -1+7*x^2-14*x^4+7*x^6 ). - R. J. Mathar, Sep 14 2012
EXAMPLE
From values of x(2),y(2) and the identity 2*sin(t)^2=1-cos(2*t) we obtain (s(4)/s(1))^(1/3)*c(1) + (s(1)/s(2))^(1/3)*c(4) + (s(2)/s(4))^(1/3)*c(1) = (4-3*7^(1/3))^(1/3) - (1/2)*(7*(11-3*49^(1/3)))^(1/3), where c(j):=cos(2*Pi*j/7). Further, from values of x(1),x(3),y(1),y(3) and the identity 4*sin(t)^3=3*sin(t)-sin(3*t) we obtain (s(4)/s(1))^(1/3)*s(4) + (s(1)/s(2))^(1/3)*s(1) + (s(2)/s(4))^(1/3)*s(2) = (-3*7^(1/6)/2 +4*7^(1/2))*(4-3*7^(1/3))^(1/3) - 7^(5/6)*(11-3*49^(1/3))^(1/3).
MATHEMATICA
LinearRecurrence[{0, 7, 0, -14, 0, 7}, {5, 4, 22, 17, 91, 69}, {1, 50}] (* G. C. Greubel, Apr 19 2018 *)
PROG
(PARI) Vec(-x*(1+x)*(6*x^4+x^3-12*x^2-x+5)/(-1+7*x^2-14*x^4+7*x^6) + O(x^50)) \\ Michel Marcus, Apr 20 2016
(Magma) I:=[5, 4, 22, 17, 91, 69]; [n le 6 select I[n] else 7*Self(n-2) - 14*Self(n-4) + 7*Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 19 2018
KEYWORD
nonn,easy
AUTHOR
Roman Witula, Aug 04 2012
EXTENSIONS
More terms from Michel Marcus, Apr 20 2016
STATUS
approved