The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214750 Least m > 0 such that n - m divides n^2 + m^2. 3
1, 1, 2, 3, 2, 5, 4, 3, 2, 9, 3, 11, 6, 5, 8, 15, 6, 17, 4, 3, 11, 21, 6, 15, 13, 9, 12, 27, 5, 29, 16, 11, 17, 10, 4, 35, 19, 13, 8, 39, 6, 41, 12, 15, 23, 45, 12, 35, 10, 17, 20, 51, 18, 5, 7, 19, 29, 57, 10, 59, 31, 9, 32, 15, 22, 65, 34, 23, 14, 69, 8, 71, 37, 25, 38 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,3
COMMENTS
It appears that this is the sequence of k's for A110357. - Michel Marcus, Aug 16 2019
If n-m = s, then n = s+m and n-m | n^2+m^2 is equivalent to s | (s^2 + 2*s*m + 2*m^2). So n-m | n^2+m^2 is equivalent to n-m | 2*m^2. If n-k = s, then n = s+k and n-k | n*(n+k) is equivalent to s | (s^2 + 3*s*k + 2*k^2). So n-k | n*(n+k) is equivalent to n-k | 2*k^2. Therefore n-m | n^2+m^2 is equivalent to n-k | n*(n+k) and the k's from A110357 and the m's from this sequence are the same. - Bob Andriesse, Dec 26 2022
Let n-m = s; then m = n-s and n-m | n^2 + m^2 is equivalent to s | n^2 + (n-s)^2 or s | 2*n^2. If n is an odd prime, s must be 2. So if n is an odd prime, a(n) = m = n-2. Examples: a(7) = 5, a(11) = 9. - Bob Andriesse, Jul 13 2023
LINKS
FORMULA
a(n) = H(n, A110357(n)) - n where H is the harmonic mean. - Bob Andriesse, Jan 03 2023
EXAMPLE
Write x#y if x|y is false; then 7#65, 6#68, 5#73, 4|80, so a(8) = 4.
For n = 11, A110357(11) = 110 and a(11) = H(11, 110) - 11 = 20 - 11 = 9. - Bob Andriesse, Jan 03 2023
MATHEMATICA
Table[m = 1; While[! Divisible[n^2+m^2, n-m], m++]; m, {n, 2, 100}]
PROG
(PARI) a(n) = my(m=1); while(denominator((n^2+m^2)/(n-m)) != 1, m++); m; \\ Michel Marcus, Aug 16 2019
(Python)
from sympy.abc import x, y
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A214750(n): return min(int(x) for x, y in diop_quadratic(n*(n-y)+x*(y+x)) if x>0) # Chai Wah Wu, Oct 06 2023
CROSSREFS
Sequence in context: A263216 A141663 A011153 * A317585 A132226 A197702
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 29 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 04:14 EDT 2024. Contains 373393 sequences. (Running on oeis4.)