login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214724
Expansion of e.g.f.: exp( Sum_{n>=0} x^(n^2+1)/(n^2+1) ).
1
1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 30496564010000, 482341877812000, 8342949421288000, 124613700640580000, 1733826182453140000, 36635355834463000000, 597186420007933040000
OFFSET
0,3
COMMENTS
Conjecture: p | a(n) for n>=p when p is a prime of the form m^2+1 (A002496).
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 10*x^4/4! + 50*x^5/5! + 220*x^6/6! +...
where, by definition,
log(A(x)) = x + x^2/2 + x^5/5 + x^10/10 + x^17/17 + x^26/26 + x^37/37 +...
MATHEMATICA
With[{m=30}, CoefficientList[Series[Exp[Sum[x^(n^2+1)/(1+n^2), {n, 0, m+ 2}]], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Jan 07 2024 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(sum(k=0, n, x^(k^2+1)/(k^2+1) + x*O(x^n))), n)}
for(n=0, 21, print1(a(n), ", "))
(Magma)
m:=30;
R<x>:=PowerSeriesRing(Rationals(), m+1);
Coefficients(R!(Laplace( Exp((&+[x^(n^2+1)/(n^2+1): n in [0..m+2]])) ))); // G. C. Greubel, Jan 07 2024
(SageMath)
m=30
def A214724_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(sum(x^(n^2+1)/(n^2+1) for n in range(m+3))) ).egf_to_ogf().list()
A214724_list(m) # G. C. Greubel, Jan 07 2024
CROSSREFS
Cf. A002496.
Sequence in context: A000613 A322294 A053500 * A368588 A326325 A080090
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2012
STATUS
approved