The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214724 Expansion of e.g.f.: exp( Sum_{n>=0} x^(n^2+1)/(n^2+1) ). 1
 1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 30496564010000, 482341877812000, 8342949421288000, 124613700640580000, 1733826182453140000, 36635355834463000000, 597186420007933040000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: p | a(n) for n>=p when p is a prime of the form m^2+1 (A002496). LINKS G. C. Greubel, Table of n, a(n) for n = 0..449 EXAMPLE E.g.f.: A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 10*x^4/4! + 50*x^5/5! + 220*x^6/6! +... where, by definition, log(A(x)) = x + x^2/2 + x^5/5 + x^10/10 + x^17/17 + x^26/26 + x^37/37 +... MATHEMATICA With[{m=30}, CoefficientList[Series[Exp[Sum[x^(n^2+1)/(1+n^2), {n, 0, m+ 2}]], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Jan 07 2024 *) PROG (PARI) {a(n)=n!*polcoeff(exp(sum(k=0, n, x^(k^2+1)/(k^2+1) + x*O(x^n))), n)} for(n=0, 21, print1(a(n), ", ")) (Magma) m:=30; R:=PowerSeriesRing(Rationals(), m+1); Coefficients(R!(Laplace( Exp((&+[x^(n^2+1)/(n^2+1): n in [0..m+2]])) ))); // G. C. Greubel, Jan 07 2024 (SageMath) m=30 def A214724_list(prec): P. = PowerSeriesRing(QQ, prec) return P( exp(sum(x^(n^2+1)/(n^2+1) for n in range(m+3))) ).egf_to_ogf().list() A214724_list(m) # G. C. Greubel, Jan 07 2024 CROSSREFS Cf. A002496. Sequence in context: A000613 A322294 A053500 * A326325 A080090 A125263 Adjacent sequences: A214721 A214722 A214723 * A214725 A214726 A214727 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 13:47 EST 2024. Contains 370512 sequences. (Running on oeis4.)