login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213736
Triangle read by rows, coefficients of the Swiss-Knife median polynomials M_{n}(x) in descending order of powers.
0
1, 1, -1, -1, 1, -2, -5, 6, 4, 1, -3, -12, 29, 57, -72, -46, 1, -4, -22, 80, 261, -660, -1264, 1608, 1024, 1, -5, -35, 170, 775, -2941, -9385, 23880, 45620, -58080, -36976, 1, -6, -51, 310, 1815, -9186, -41033, 156618, 498660, -1269720, -2425056, 3087648
OFFSET
0,6
COMMENTS
M(n,0) = M(n,1) = A099023(n) = (-1)^n*A000657(n).
EXAMPLE
M(0,x) = 1,
M(1,x) = x^2-x-1,
M(2,x) = x^4-2*x^3-5*x^2+6*x+4,
M(3,x) = x^6-3*x^5-12*x^4+29*x^3+57*x^2-72*x-46.
MAPLE
A213736_triangle := proc(n) local A, len, k, m, sk_poly;
len := 2*n-1; A := array(0..len, 0..len);
sk_poly := proc(n, x) local v, k;
add(`if`((k+1)mod 4 = 0, 0, (-1)^iquo(k+1, 4))*2^iquo(-k, 2)*
add((-1)^v*binomial(k, v)*(v+x+1)^n, v=0..k), k=0..n) end:
for m from 0 to len do A[m, 0] := sk_poly(m, x);
for k from m-1 by -1 to 0 do
A[k, m-k] := A[k+1, m-k-1] - A[k, m-k-1] od od;
seq(print(seq(coeff(A[k, k], x, 2*k-i), i=0..2*k)), k=0..n-1) end:
A213736_triangle(5);
CROSSREFS
Sequence in context: A353604 A021979 A021043 * A202343 A154946 A368050
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Jun 19 2012
STATUS
approved