The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213736 Triangle read by rows, coefficients of the Swiss-Knife median polynomials M_{n}(x) in descending order of powers. 0
 1, 1, -1, -1, 1, -2, -5, 6, 4, 1, -3, -12, 29, 57, -72, -46, 1, -4, -22, 80, 261, -660, -1264, 1608, 1024, 1, -5, -35, 170, 775, -2941, -9385, 23880, 45620, -58080, -36976, 1, -6, -51, 310, 1815, -9186, -41033, 156618, 498660, -1269720, -2425056, 3087648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS M(n,0) = M(n,1) = A099023(n) = (-1)^n*A000657(n). LINKS Peter Luschny, An old operation on sequences: the Seidel transform. EXAMPLE M(0,x) = 1, M(1,x) = x^2-x-1, M(2,x) = x^4-2*x^3-5*x^2+6*x+4, M(3,x) = x^6-3*x^5-12*x^4+29*x^3+57*x^2-72*x-46. MAPLE A213736_triangle := proc(n) local A, len, k, m, sk_poly; len := 2*n-1; A := array(0..len, 0..len); sk_poly := proc(n, x) local v, k; add(`if`((k+1)mod 4 = 0, 0, (-1)^iquo(k+1, 4))*2^iquo(-k, 2)* add((-1)^v*binomial(k, v)*(v+x+1)^n, v=0..k), k=0..n) end: for m from 0 to len do A[m, 0] := sk_poly(m, x);    for k from m-1 by -1 to 0 do        A[k, m-k] := A[k+1, m-k-1] - A[k, m-k-1] od od; seq(print(seq(coeff(A[k, k], x, 2*k-i), i=0..2*k)), k=0..n-1) end: A213736_triangle(5); CROSSREFS Cf. A153641, A162660. Sequence in context: A091655 A021979 A021043 * A202343 A154946 A343933 Adjacent sequences:  A213733 A213734 A213735 * A213737 A213738 A213739 KEYWORD sign,tabf AUTHOR Peter Luschny, Jun 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 17:05 EDT 2021. Contains 347618 sequences. (Running on oeis4.)