login
A213616
Triangle read by rows, coefficients of the Bernoulli nabla polynomials BN_{n}(x) times A144845(n) in descending order of powers.
1
1, 2, -3, 6, -18, 13, 2, -9, 13, -6, 30, -180, 390, -360, 119, 6, -45, 130, -180, 119, -30, 42, -378, 1365, -2520, 2499, -1260, 253, 6, -63, 273, -630, 833, -630, 253, -42, 30, -360, 1820, -5040, 8330, -8400, 5060, -1680, 239, 10, -135, 780, -2520, 4998, -6300
OFFSET
0,2
COMMENTS
The polynomials BN_{n}(x) have the e.g.f. t*exp(t*(x-1))/(exp(t)-1). The adjunct 'nabla' in the name refers to the backward difference operation.
BN_{n}(1) are the Bernoulli numbers.
In the difference table of the Bernoulli polynomials the polynomials BN_{n}(x) appear as the top row (see the link).
FORMULA
T(n,k) = A144845(n)*[x^(n-k)]BN{n}(x).
EXAMPLE
bn(0,x) = 1,
bn(1,x) = 2*x - 3,
bn(2,x) = 6*x^2 - 18*x + 13,
bn(3,x) = 2*x^3 - 9*x^2 + 13*x - 6,
bn(4,x) = 30*x^4 - 180*x^3 + 390*x^2 - 360*x + 119,
bn(5,x) = 6*x^5 - 45*x^4 + 130*x^3 - 180*x^2 + 119*x - 30.
MAPLE
seq(seq(coeff(denom(bernoulli(i, x))*bernoulli(i, x - 1), x, i - j), j=0..i), i=0..12);
MATHEMATICA
Table[If[i == 0, 1, 1/First[ FactorTerms[ BernoulliB[i, x]]]]*Table[ Coefficient[ Denominator[ BernoulliB[i, x]]*BernoulliB[i, x-1], x, i-j], {j, 0, i}], {i, 0, 12}] // Flatten (* Jean-François Alcover, Sep 27 2013, after Maple *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jun 16 2012
STATUS
approved