login
A131788
a(n) = a(n-1) + (sum of the terms, from among the first (n-1) terms of the sequence, which are coprime to the n-th Fibonacci number).
1
1, 2, 3, 6, 18, 22, 74, 173, 350, 627, 1903, 3980, 11139, 29437, 72720, 108312, 337079, 379735, 988163, 1354929, 4458118, 12200929, 32148649, 78234718, 208109020, 546549127, 1108402372, 3055896646, 8105184898, 8151267237, 29457007624
OFFSET
1,2
EXAMPLE
The 6th Fibonacci number is 8. Of the first 5 terms, only terms a(1)=1 and a(3)=3 are coprime to 8. So a(6) = a(5) + 1 + 3 = 22.
MAPLE
with(combinat): a[1] := 1: for n from 2 to 30 do s := 0: for j to n-1 do if gcd(a[j], fibonacci(n)) = 1 then s := s+a[j] else s := s end if end do: a[n] := a[n-1]+s end do: seq(a[n], n = 1 .. 30); # Emeric Deutsch, Jul 17 2007
CROSSREFS
Cf. A131787.
Sequence in context: A003183 A213616 A359180 * A294455 A277703 A080338
KEYWORD
nonn
AUTHOR
Leroy Quet, Jul 15 2007
EXTENSIONS
More terms from Emeric Deutsch and Joshua Zucker, Jul 17 2007
STATUS
approved