login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131791 Triangle read by rows of 2^n terms for n>=0: let S(n) denote the initial 2^n terms of the partial sums of row n; starting with a single '1' in row 0, generate row n+1 by concatenating S(n) with the terms of S(n) when read in reverse order. 3
1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 6, 5, 3, 1, 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1, 1, 5, 14, 29, 50, 76, 105, 135, 165, 194, 220, 241, 256, 265, 269, 270, 270, 269, 265, 256, 241, 220, 194, 165, 135, 105, 76, 50, 29, 14, 5, 1, 1, 6, 20, 49, 99, 175, 280, 415 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums (and central terms) form A028361: Product_{i=0..n-1} (2^i + 1).

I'm interested in the graph of S(n). It appears to tend to a limit curve if scaled appropriately, e.g., scaled to fit a [0,1] box by f_n(x) = T(n,[x*2^n])/A028361(n-1). In this setup I think that the limit curve f(x) satisfies f(0)=0, f(1-x)=f(x), f(1/2)=1, f'(x)=2f(2x) for x<=1/2. Is this equation solvable? - Martin Fuller, Aug 31 2007

Comment from N. J. A. Sloane, Nov 13 2018 (Start):

Kenyon (1992) defines p_n(x) (n >= 0) to be the polynomial

p_n(x) = (1+x)*(1+x+x^2)*(1+x+x^2+x^3+x^4)*...*(1+x+...+x^(2^n)).

He shows among many other things that the coefficient of x^(floor(c*2^(n+1))) in p_n(x), for c in [0,1], is given by

(f(c)+o(1))*p_n(1)/2^(n+1),

where f : R -> R is a nonzero C^1 function satisfying

(i) support(f) is a subset of [0,1],

(ii) f(x) = f(1-x), and

(iii) f'(x) = 4*f(2*x) for 0 <= x <= 1/2.

These three properties define f uniquely up to multiplication by a scalar. Also f is C^oo, is nowhere analytic on [0,1], and is a "bump function", since its graph looks like a "bump".

This provides a fairly complete answer to Martin Fuller's question above. (End)

REFERENCES

Richard Kenyon, Infinite scaled convolutions, Preprint, 1992 (apparently unpublished)

LINKS

Paul D. Hanna, Rows 0 to 11 of the triangle, flattened.

FORMULA

T(n, 2^(n-1)) = A028361(n-1) for n>=1.

T(n, 2^(n-2)) = A028362(n-1) for n>=2.

Sum_{k=0..2^n-1} (k+1)*T(n,k) = A028362(n+1) for n>=0.

G.f. of row n: Product_{j=0..n-1} (1 - x^(2^j+1))/(1-x). - Paul D. Hanna, Aug 09 2009

EXAMPLE

Triangle begins:

1;

1, 1;

1, 2, 2, 1;

1, 3, 5, 6, 6, 5, 3, 1;

1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1;

1, 5, 14, 29, 50, 76, 105, 135, 165, 194, 220, 241, 256, 265, 269, 270, 270, 269, 265, 256, 241, 220, 194, 165, 135, 105, 76, 50, 29, 14, 5, 1; ...

ILLUSTRATION OF GENERATING METHOD.

From row 2: [1,2,2,1], take the partial sums: [1,3,5,6] and concatenate to this the terms in reverse order: [6,5,3,1] to obtain row 3: [1,3,5,6, 6,5,3,1].

MAPLE

p[-1]:=1:

lprint(seriestolist(series(p[-1], x, 0)));

p[0]:=(1-x^2)/(1-x):

lprint(seriestolist(series(p[0], x, 2)));

for n from 1 to 4 do

p[n]:=p[n-1]*(1-x^(2^n+1))/(1-x);

lprint(seriestolist(series(p[n], x, 2^(n+1))));

od: # N. J. A. Sloane, Nov 13 2018

PROG

(PARI) T(n, k)=local(A=[1], B=[1]); if(n==0, 1, for(i=0, n-1, B=Vec(Ser(A)/(1-x)); A=concat(B, Vec(Pol(B)+O(x^#B)))); A[k+1])

for(n=0, 6, for(k=0, 2^n-1, print1(T(n, k), ", ")); print())

(PARI) T(n, k)=polcoeff(prod(j=0, n-1, (1-x^(2^j+1))/(1-x)), k)

for(n=0, 6, for(k=0, 2^n-1, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Aug 09 2009

CROSSREFS

Cf. A131792 (main diagonal); A028361, A028362.

Sequence in context: A272689 A274887 A008302 * A010358 A155865 A156133

Adjacent sequences:  A131788 A131789 A131790 * A131792 A131793 A131794

KEYWORD

nonn,tabf,look

AUTHOR

Paul D. Hanna, Jul 15 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 15:00 EST 2019. Contains 319350 sequences. (Running on oeis4.)