login
A213540
Numbers k such that k AND k*2 = 2, where AND is the bitwise AND operator.
3
3, 11, 19, 35, 43, 67, 75, 83, 131, 139, 147, 163, 171, 259, 267, 275, 291, 299, 323, 331, 339, 515, 523, 531, 547, 555, 579, 587, 595, 643, 651, 659, 675, 683, 1027, 1035, 1043, 1059, 1067, 1091, 1099, 1107, 1155, 1163, 1171, 1187, 1195, 1283, 1291, 1299, 1315
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A003714(n-1)*8 + 3.
EXAMPLE
In binary, 19 is 10011, while 2 * 19 = 38 is of course 100110. Since 010011 AND 100110 = 000010 (in decimal, 2), 19 is in the sequence.
20 is not in the sequence, since 010100 AND 101000 = 000000.
MAPLE
F:= combinat[fibonacci]:
b:= proc(n) local j;
if n=0 then 0
else for j from 2 while F(j+1)<=n do od;
b(n-F(j))+2^(j-2)
fi
end:
a:= n-> 8*b(n-1)+3:
seq(a(n), n=1..60); # Alois P. Heinz, Jun 17 2012
MATHEMATICA
Select[Range[1024], BitAnd[#, 2#] == 2 &] (* Alonso del Arte, Jun 18 2012 *)
PROG
(Python)
for n in range(1777):
a = 2*n & n
if a==2:
print(n, end=', ')
(PARI) is(n)=bitand(n, 2*n)==2 \\ Charles R Greathouse IV, Jun 18 2012
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Jun 14 2012
STATUS
approved