

A213542


a(n) = k AND k^k, where k=2*n+1, AND is the bitwise AND operator.


2



1, 3, 5, 7, 9, 3, 13, 15, 17, 3, 5, 7, 25, 3, 13, 31, 33, 35, 5, 7, 41, 35, 13, 15, 49, 35, 37, 7, 57, 35, 45, 63, 65, 67, 69, 7, 9, 3, 13, 15, 81, 67, 5, 7, 25, 3, 77, 31, 97, 35, 5, 7, 41, 99, 77, 15, 113, 35, 37, 7, 57, 99, 109, 127, 129, 131, 133, 7, 137, 131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS



MAPLE

a:= proc(n) local i, k, m, r;
k:= 2*n+1;
m:= k &^ k mod (2^(1+ilog2(k)));
r:= 0;
for i from 0 while (m>0 or k>0) do
r:= r +2^i* irem(m, 2, 'm') *irem(k, 2, 'k')
od; r
end:


MATHEMATICA

Table[BitAnd[n, n^n], {n, 1, 141, 2}] (* Harvey P. Dale, Nov 26 2014 *)


PROG

(Python)
print([k**k & k for k in range(1, 222, 2)])


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



