login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213483
Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| >= w+x+y.
3
1, 5, 13, 23, 38, 55, 78, 103, 135, 169, 211, 255, 308, 363, 428, 495, 573, 653, 745, 839, 946, 1055, 1178, 1303, 1443, 1585, 1743, 1903, 2080, 2259, 2456, 2655, 2873, 3093, 3333, 3575, 3838, 4103, 4390, 4679, 4991, 5305, 5643, 5983, 6348
OFFSET
0,2
COMMENTS
a(n) + A213482(n) = (n+1)^3.
For a guide to related sequences, see A212959.
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: (1 + 3*x + 2*x^2 - 4*x^3 - 2*x^4 + x^5)/((1 - x)^4*(1 + x)^2).
From Ayoub Saber Rguez, Dec 31 2021: (Start)
a(n) + A213482(n) = (n+1)^3.
a(n) = A213479(n) + A006918(n).
a(n)= (n^3 + 33*n^2 + 71*n + 15 + (3*n+9)*((n+1) mod 2))/24. (End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y <= Abs[w - x] + Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213483 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 5, 13, 23, 38, 55}, 50] (* Harvey P. Dale, Sep 11 2019 *)
CROSSREFS
Cf. A212959.
Sequence in context: A074798 A031336 A099958 * A049833 A083800 A075829
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 13 2012
STATUS
approved