OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: (1 + 3*x + 2*x^2 - 4*x^3 - 2*x^4 + x^5)/((1 - x)^4*(1 + x)^2).
From Ayoub Saber Rguez, Dec 31 2021: (Start)
a(n) + A213482(n) = (n+1)^3.
a(n)= (n^3 + 33*n^2 + 71*n + 15 + (3*n+9)*((n+1) mod 2))/24. (End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y <= Abs[w - x] + Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213483 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 5, 13, 23, 38, 55}, 50] (* Harvey P. Dale, Sep 11 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 13 2012
STATUS
approved