login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| >= w+x+y.
3

%I #17 Oct 27 2024 06:11:10

%S 1,5,13,23,38,55,78,103,135,169,211,255,308,363,428,495,573,653,745,

%T 839,946,1055,1178,1303,1443,1585,1743,1903,2080,2259,2456,2655,2873,

%U 3093,3333,3575,3838,4103,4390,4679,4991,5305,5643,5983,6348

%N Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| >= w+x+y.

%C a(n) + A213482(n) = (n+1)^3.

%C For a guide to related sequences, see A212959.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).

%F a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).

%F G.f.: (1 + 3*x + 2*x^2 - 4*x^3 - 2*x^4 + x^5)/((1 - x)^4*(1 + x)^2).

%F From _Ayoub Saber Rguez_, Dec 31 2021: (Start)

%F a(n) + A213482(n) = (n+1)^3.

%F a(n) = A213479(n) + A006918(n).

%F a(n)= (n^3 + 33*n^2 + 71*n + 15 + (3*n+9)*((n+1) mod 2))/24. (End)

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[w + x + y <= Abs[w - x] + Abs[x - y], s = s + 1],

%t {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];

%t Map[t[#] &, Range[0, 60]] (* A213483 *)

%t LinearRecurrence[{2,1,-4,1,2,-1},{1,5,13,23,38,55},50] (* _Harvey P. Dale_, Sep 11 2019 *)

%Y Cf. A212959.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Jun 13 2012