login
A213222
Minimum number of distinct slopes formed by n noncollinear points in the plane.
3
3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72, 74, 74, 76, 76, 78, 78, 80, 80, 82, 82, 84
OFFSET
3,1
COMMENTS
Scott formulated the problem (on the basis of a similar problem of Erdős), gave bounds, and conjectured the formula which Unger later proved.
Also the edge chromatic number of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 23 2018
REFERENCES
Martin Aigner and Gunter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin, 2000. Chapter 10.
LINKS
J. E. Goodman and R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A, 29 (1980), pp. 220-235.
P. R. Scott, On the sets of directions determined by n points, The American Mathematical Monthly 77:5 (1970), pp. 502-505.
Peter Ungar, 2N noncollinear points determine at least 2N directions, Journal of Combinatorial Theory, Series A, 33:3 (1982), pp. 343-347.
Eric Weisstein's World of Mathematics, Edge Chromatic Number
Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
FORMULA
a(n) = 2*floor(n/2) for n > 3.
G.f.: x^3*(3+x-3*x^2+x^3)/((1+x)*(1-x)^2). [Bruno Berselli, Mar 04 2013]
MAPLE
A213222:=n->`if`(n = 3, 3, 2*floor(n/2)); seq(A213222(n), n=3..100); # Wesley Ivan Hurt, Mar 28 2014
MATHEMATICA
CoefficientList[Series[(3 + x - 3 x^2 + x^3)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 29 2014 *)
PROG
(PARI) a(n)=if(n>3, n\2*2, 3)
(Magma) [2*Floor(n/2): n in [3..100]]; // Vincenzo Librandi, Mar 29 2014
CROSSREFS
Cf. A000217 (maximum number of slopes, with offset 1).
Sequence in context: A354154 A229022 A014683 * A166737 A088847 A120613
KEYWORD
nonn,easy
AUTHOR
STATUS
approved