OFFSET
3,1
COMMENTS
Scott formulated the problem (on the basis of a similar problem of Erdős), gave bounds, and conjectured the formula which Unger later proved.
Also the edge chromatic number of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 23 2018
REFERENCES
Martin Aigner and Gunter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin, 2000. Chapter 10.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..1000
J. E. Goodman and R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A, 29 (1980), pp. 220-235.
Giovanni Resta, Illustration of terms a(3)-a(7)
P. R. Scott, On the sets of directions determined by n points, The American Mathematical Monthly 77:5 (1970), pp. 502-505.
Peter Ungar, 2N noncollinear points determine at least 2N directions, Journal of Combinatorial Theory, Series A, 33:3 (1982), pp. 343-347.
Eric Weisstein's World of Mathematics, Edge Chromatic Number
Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = 2*floor(n/2) for n > 3.
G.f.: x^3*(3+x-3*x^2+x^3)/((1+x)*(1-x)^2). [Bruno Berselli, Mar 04 2013]
MAPLE
A213222:=n->`if`(n = 3, 3, 2*floor(n/2)); seq(A213222(n), n=3..100); # Wesley Ivan Hurt, Mar 28 2014
MATHEMATICA
CoefficientList[Series[(3 + x - 3 x^2 + x^3)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 29 2014 *)
PROG
(PARI) a(n)=if(n>3, n\2*2, 3)
(Magma) [2*Floor(n/2): n in [3..100]]; // Vincenzo Librandi, Mar 29 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Charles R Greathouse IV, Mar 02 2013
STATUS
approved