login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212675
Number of (w,x,y,z) with all terms in {1,...,n} and w >= |x-y| + |y-z|.
2
0, 1, 14, 57, 158, 353, 688, 1217, 2004, 3121, 4650, 6681, 9314, 12657, 16828, 21953, 28168, 35617, 44454, 54841, 66950, 80961, 97064, 115457, 136348, 159953, 186498, 216217, 249354, 286161, 326900, 371841, 421264, 475457, 534718
OFFSET
0,3
COMMENTS
a(n) + A212568(n) = n^4.
For a guide to related sequences, see A211795.
FORMULA
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: (x + 10*x^2 + 6*x^3 + x^5)/(1 - 4*x + 5*x^2 - 5*x^4 + 4*x^5 - x^6). [corrected by Georg Fischer, May 10 2019]
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w >= Abs[x - y] + Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212675 *)
LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 14, 57, 158, 353}, 40]
CROSSREFS
Cf. A211795.
Sequence in context: A022286 A005915 A211069 * A041376 A063537 A084195
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 23 2012
STATUS
approved