|
|
A212663
|
|
Number of ways to represent n’ as x’ + y’, where x+y = n, x > 0, and n’, x’, y’ are the arithmetic derivatives of n, x, y.
|
|
4
|
|
|
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,39
|
|
LINKS
|
Paolo P. Lava, Table of n, a(n) for n = 1..5000
|
|
MAPLE
|
with(numtheory);
A212663:=proc(q)
local a, b, c, i, n, p, pfs, t;
for n from 1 to q do
pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs); t:=0;
for i from 1 to trunc(n/2) do
pfs:=ifactors(i)[2]; b:=i*add(op(2, p)/op(1, p), p=pfs);
pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2, p)/op(1, p), p=pfs);
if a=b+c then t:=t+1; fi;
od;
print(t);
od; end:
A212663(1000);
|
|
CROSSREFS
|
Cf. A003415, A211223-A211225, A212662, A212664.
Sequence in context: A016380 A341354 A203945 * A341774 A015692 A016232
Adjacent sequences: A212660 A212661 A212662 * A212664 A212665 A212666
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paolo P. Lava, May 23 2012
|
|
STATUS
|
approved
|
|
|
|