login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212577
Number of (w,x,y,z) with all terms in {1,...,n} and |w-x|=2|x-y|-|y-z|.
2
0, 1, 4, 17, 46, 89, 154, 251, 374, 531, 736, 979, 1268, 1621, 2024, 2485, 3026, 3629, 4302, 5071, 5914, 6839, 7876, 8999, 10216, 11561, 13004, 14553, 16246, 18049, 19970, 22051, 24254, 26587, 29096, 31739, 34524, 37501, 40624, 43901
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
FORMULA
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8).
G.f.: (x + 2*x^2 + 10*x^3 + 14*x^4 + 10*x^5 + 2*x^6 + x^7)/(1 - 2*x + x^2 - 2*x^3 + 4*x^4 - 2*x^5 + x^6 - 2*x^7 + x^8). [corrected by Georg Fischer, May 03 2019]
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == 2 Abs[x - y] - Abs[y - z],
s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212577 *)
LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {0, 1, 4, 17, 46, 89, 154, 251}, 45]
CROSSREFS
Cf. A211795.
Sequence in context: A376232 A147656 A095667 * A332863 A119949 A213499
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 22 2012
STATUS
approved