login
A212554
Products of supersingular primes (A002267).
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 75, 76, 77, 78, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
OFFSET
1,2
COMMENTS
The initial 1 is included because it has no non-supersingular prime factors.
Many of the early terms divide the order of the monster simple group (see A174670). The first n such that a(n) does not belong to A174670 is a(204)=289.
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
A. P. Ogg, Modular functions, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 521-532, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
LINKS
Eric Weisstein's World of Mathematics, Supersingular Prime
FORMULA
log a(n) ~ k*n^(1/15). - Charles R Greathouse IV, Jul 18 2012
MATHEMATICA
ps = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}; fQ[n_] := Module[{p = Transpose[FactorInteger[n]][[1]]}, Complement[p, ps] == {}]; Join[{1}, Select[Range[2, 1000], fQ]] (* T. D. Noe, May 21 2012 *)
CROSSREFS
Cf. A002267, A174670, A108764 (products of exactly two supersingular primes).
Sequence in context: A273885 A363287 A174670 * A178772 A367141 A296870
KEYWORD
nonn
AUTHOR
Ben Branman, May 21 2012
STATUS
approved