Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jun 14 2024 22:31:10
%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
%T 27,28,29,30,31,32,33,34,35,36,38,39,40,41,42,44,45,46,47,48,49,50,51,
%U 52,54,55,56,57,58,59,60,62,63,64,65,66,68,69,70,71,72,75,76,77,78,80,81,82,84,85,87,88,90,91,92,93,94,95,96,98,99,100
%N Products of supersingular primes (A002267).
%C The initial 1 is included because it has no non-supersingular prime factors.
%C Many of the early terms divide the order of the monster simple group (see A174670). The first n such that a(n) does not belong to A174670 is a(204)=289.
%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
%D J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
%D A. P. Ogg, Modular functions, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 521-532, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
%H T. D. Noe, <a href="/A212554/b212554.txt">Table of n, a(n) for n = 1..10000</a>
%H T. Gannon, <a href="http://arxiv.org/abs/math/0109067">Postcards from the edge, or Snapshots of the theory of generalised Moonshine</a>, arXiv:math/0109067.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SupersingularPrime.html">Supersingular Prime</a>
%F log a(n) ~ k*n^(1/15). - _Charles R Greathouse IV_, Jul 18 2012
%t ps = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}; fQ[n_] := Module[{p = Transpose[FactorInteger[n]][[1]]}, Complement[p, ps] == {}]; Join[{1}, Select[Range[2,1000], fQ]] (* _T. D. Noe_, May 21 2012 *)
%Y Cf. A002267, A174670, A108764 (products of exactly two supersingular primes).
%K nonn
%O 1,2
%A _Ben Branman_, May 21 2012