login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211989
A list of ordered partitions of the positive integers in which the shells of each integer are assembled by their tails.
8
1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 6, 3, 3, 4, 2, 2, 2, 2, 4, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 5, 1, 7, 4, 3, 5, 2, 3, 2, 2, 5, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 2, 1, 4, 2, 1, 3, 3, 1, 6, 1
OFFSET
1,2
COMMENTS
The sequence lists the partitions of all positive integers. Each row of the irregular array is a partition of j.
At stage 1, we start with 1.
At stage j > 1, we write the partitions of j using the following rules:
First, we write the partitions of j that do not contain 1 as a part, in reverse-lexicographic order, starting with the partition that contains the part of size j.
Second, we copy from this array the partitions of j-1 in descending order, as a mirror image, starting with the partition that contains the part of size j-2 together with the part of size 1. At the end of each new row, we added a part of size 1.
EXAMPLE
A table of partitions.
--------------------------------------------
. Expanded Geometric
Partitions arrangement model
--------------------------------------------
1; 1; |*|
--------------------------------------------
2; . 2; |* *|
1,1; 1,1; |o|*|
--------------------------------------------
3; . . 3; |* * *|
1,1,1; 1,1,1; |o|o|*|
2,1; . 2,1; |o o|*|
--------------------------------------------
4; . . . 4; |* * * *|
2,2; . 2,. 2; |* *|* *|
2,1,1; . 2,1,1; |o o|o|*|
1,1,1,1; 1,1,1,1; |o|o|o|*|
3,1; . . 3,1; |o o o|*|
--------------------------------------------
5; . . . . 5; |* * * * *|
3,2; . . 3,. 2; |* * *|* *|
3,1,1; . . 3,1,1; |o o o|o|*|
1,1,1,1,1; 1,1,1,1,1; |o|o|o|o|*|
2,1,1,1; . 2,1,1,1; |o o|o|o|*|
2,2,1; . 2,. 2,1; |o o|o o|*|
4,1; . . . 4,1; |o o o o|*|
--------------------------------------------
6; . . . . . 6; |* * * * * *|
3,3; . . 3,. . 3; |* * *|* * *|
4,2; . . . 4,. 2; |* * * *|* *|
2,2,2; . 2,. 2,. 2; |* *|* *|* *|
4,1,1; . . . 4,1,1; |o o o o|o|*|
2,2,1,1; . 2,. 2,1,1; |o o|o o|o|*|
2,1,1,1,1; . 2,1,1,1,1; |o o|o|o|o|*|
1,1,1,1,1,1; 1,1,1,1,1,1; |o|o|o|o|o|*|
3,1,1,1; . . 3,1,1,1; |o o o|o|o|*|
3,2,1; . . 3,. 2,1; |o o o|o o|*|
5,1; . . . . 5,1; |o o o o o|*|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
CROSSREFS
Rows sums give A036042, n>=1.
Other versions are A211983, A211984, A211999. See also A026792, A211992-A211994. Spiral arrangements are A211985-A211988, A211995-A211998.
Sequence in context: A211009 A337266 A211986 * A207377 A135010 A138138
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Aug 18 2012
STATUS
approved