login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211375
Semiprimes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9), without digits "0".
1
15, 21, 26, 34, 38, 39, 51, 58, 62, 65, 74, 82, 85, 87, 93, 95, 115, 121, 122, 123, 129, 133, 134, 142, 143, 145, 155, 158, 159, 177, 178, 183, 185, 187, 213, 214, 215, 217, 218, 219, 221, 226, 247, 249, 254, 259, 262, 265, 267, 274, 278
OFFSET
1,1
COMMENTS
This is to semiprimes A001358 as A220488 is to primes A000040.
LINKS
EXAMPLE
a(1) = 15 because 15 = 3*5 is semiprime, "1" is a nonprime digit, and "5" is a prime digit.
MATHEMATICA
SemiprimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; fQ[n_] := Module[{d = IntegerDigits[n]}, SemiprimeQ[n] && Intersection[d, {2, 3, 5, 7}] != {} && Intersection[d, {1, 4, 6, 8, 9}] != {} && ! MemberQ[d, 0]]; Select[Range[278], fQ] (* T. D. Noe, Feb 09 2013 *)
spQ[n_]:=PrimeOmega[n]==2&&FreeQ[IntegerDigits[n], 0]&&Count[ IntegerDigits[ n], _?PrimeQ]>0&&Count[IntegerDigits[n], _?(!PrimeQ[#]&)]>0; Select[ Range[ 300], spQ] (* Harvey P. Dale, Mar 31 2022 *)
CROSSREFS
Sequence in context: A280389 A057489 A070811 * A326387 A217078 A378675
KEYWORD
nonn,base,easy,less
AUTHOR
Jonathan Vos Post, Feb 06 2013
STATUS
approved