login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211312
Square array of Delannoy numbers D(i,j) mod 3 (i >= 0, j >= 0) read by antidiagonals.
5
1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 0, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 2, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 2, 2, 0, 2, 2, 1, 1, 1, 1, 0, 1, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1
OFFSET
0,8
LINKS
Marko Razpet, A self-similarity structure generated by king's walk, Algebraic and topological methods in graph theory (Lake Bled, 1999). Discrete Math. 244 (2002), no. 1-3, 423--433. MR1844050 (2002k:05022)
FORMULA
a(n) = sum(binomial(k, j) * binomial(n-j, k), j=0..n-k) mod 3. - Johannes W. Meijer, Jul 19 2013
EXAMPLE
Written as a triangle:
1,
1, 1,
1, 0, 1,
1, 2, 2, 1,
1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1,
1, 2, 2, 0, 2, 2, 1,
1, 1, 1, 0, 0, 1, 1, 1,
1, 0, 1, 0, 0, 0, 1, 0, 1,
...
MAPLE
A211312 := proc(n, k): add(binomial(k, j) * binomial(n-j, k), j=0..n-k) mod 3 end: seq(seq(A211312(n, k), k=0..n), n=0..12); # Johannes W. Meijer, Jul 19 2013
MATHEMATICA
a[n_, k_] := Mod[Binomial[n, k]*Hypergeometric2F1[-k, k-n, -n, -1], 3]; Table[a[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Johannes W. Meijer *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 15 2012
STATUS
approved