login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210764
Square array T(n,k), n>=0, k>=0, read by antidiagonals in which column k gives the partial sums of column k of A144064.
3
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 4, 1, 1, 12, 18, 13, 5, 1, 1, 19, 38, 35, 19, 6, 1, 1, 30, 74, 86, 59, 26, 7, 1, 1, 45, 139, 194, 164, 91, 34, 8, 1, 1, 67, 249, 415, 416, 281, 132, 43, 9, 1, 1, 97, 434, 844, 990, 787, 447, 183, 53, 10, 1
OFFSET
0,5
COMMENTS
It appears that row 2 is A034856.
Observation:
Column 1 is the EULER transform of 2,1,1,1,1,1,1,1...
Column 2 is the EULER transform of 3,2,2,2,2,2,2,2...
LINKS
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 4, 8, 13, 19, 26, 34, 43, 53,
1, 7, 18, 35, 59, 91, 132, 183,
1, 12, 38, 86, 164, 281, 447,
1, 19, 74, 194, 416, 787,
1, 30, 139, 415, 990,
1, 45, 249, 844,
1, 67, 434,
1, 97,
1,
MAPLE
with(numtheory):
etr:= proc(p) local b;
b:= proc(n) option remember; `if`(n=0, 1,
add(add(d*p(d), d=divisors(j))*b(n-j), j=1..n)/n)
end
end:
A:= (n, k)-> etr(j-> k +`if`(j=1, 1, 0))(n):
seq(seq(A(d-k, k), k=0..d), d=0..14); # Alois P. Heinz, May 20 2013
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[Function[{j}, k + If[j == 1, 1, 0]]][n]; Table[Table[A[d-k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
CROSSREFS
Columns (0-3): A000012, A000070, A000713, A210843.
Rows (0-1): A000012, A000027.
Main diagonal gives A303070.
Sequence in context: A034371 A318951 A101321 * A091186 A138155 A214986
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jun 27 2012
STATUS
approved