The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210582 Numbers whose first digit is the remainder of their division by the last digit (in base 10). 2
 13, 19, 23, 26, 29, 39, 46, 49, 59, 69, 79, 89, 103, 109, 127, 133, 163, 193, 197, 199, 203, 206, 209, 214, 218, 233, 234, 236, 247, 254, 258, 263, 266, 274, 293, 294, 296, 298, 299, 309, 367, 399, 406, 409, 417, 428, 436, 466, 468, 487, 496, 499, 509, 537, 599, 609, 638, 657, 678, 699, 709, 799, 809, 899 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is a restricted or simplified version of the definition of modest numbers A054986. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 E. Angelini, Not Modest, Mar 22 2012 E. Angelini, Not modest [Cached copy, with permission] FORMULA a(n) mod A010879(a(n)) = A000030(a(n)). [Reinhard Zumkeller, Mar 26 2011] PROG (PARI) is_nm( x )=x%10 && x%(x%10)==x\10^(#Str(x)-1) for(n=1, 999, is_nm(n)&print1(n", ")) (Haskell) a210582 n = a210582_list !! (n-1) a210582_list = filter (\x -> mod x (a010879 x) == a000030 x) a067251_list -- Reinhard Zumkeller, Mar 26 2012 (MAGMA) [ n: n in [1..1002] | not IsZero(d[1]) and n mod d[1] eq d[#d] where d is Intseq(n) ];  // Bruno Berselli, Mar 26 2012 CROSSREFS Cf. A054986, A178158. A subsequence of A067251, disjoint with A034709. Sequence in context: A088184 A274407 A054986 * A071621 A240565 A160951 Adjacent sequences:  A210579 A210580 A210581 * A210583 A210584 A210585 KEYWORD nonn,base AUTHOR Eric Angelini and M. F. Hasler, Mar 22 2012 EXTENSIONS Edited by M. F. Hasler, Jan 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 22:39 EDT 2021. Contains 346377 sequences. (Running on oeis4.)