login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210527
a(n) = 9*n^2 + 39*n + 83.
0
83, 131, 197, 281, 383, 503, 641, 797, 971, 1163, 1373, 1601, 1847, 2111, 2393, 2693, 3011, 3347, 3701, 4073, 4463, 4871, 5297, 5741, 6203, 6683, 7181, 7697, 8231, 8783, 9353, 9941, 10547, 11171, 11813, 12473, 13151, 13847, 14561, 15293, 16043, 16811, 17597
OFFSET
0,1
COMMENTS
This polynomial generates 25 sequential primes numbers for 0 <= n <= 24.
The total number of primes does not go below one-half of the total number of terms generated until n = 862. - Harvey P. Dale, Mar 18 2016
Conjecture: the total number of primes remains below one-half of the total number of terms generated from and after n = 886. - Harvey P. Dale, Mar 18 2016
FORMULA
From Elmo R. Oliveira, Oct 28 2024: (Start)
G.f.: (83 - 118*x + 53*x^2)/(1 - x)^3.
E.g.f.: (83 + 48*x + 9*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
EXAMPLE
a(0)=83, a(1)=131, a(2)=197, a(3)=281, ..., a(24)=6203.
MATHEMATICA
Table[9n^2+39n+83, {n, 0, 200}] (* Harvey P. Dale, Mar 18 2016 *)
PROG
(Maxima) makelist(9*n^2 + 39*n + 83, n, 0, 66); /* Martin Ettl, Feb 12 2013 */
(PARI) a(n)=9*n^2+39*n+83 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A142309 A186465 A142409 * A140038 A260495 A165502
KEYWORD
nonn,easy
AUTHOR
STATUS
approved