login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209646
Number of n X 4 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.
1
9, 81, 270, 630, 1215, 2079, 3276, 4860, 6885, 9405, 12474, 16146, 20475, 25515, 31320, 37944, 45441, 53865, 63270, 73710, 85239, 97911, 111780, 126900, 143325, 161109, 180306, 200970, 223155, 246915, 272304, 299376, 328185, 358785, 391230
OFFSET
1,1
COMMENTS
Column 4 of A209650.
FORMULA
Empirical: a(n) = 9*n^3 + (9/2)*n^2 - (9/2)*n.
Formula confirmed by Robert Israel, Mar 07 2018: see link.
From Colin Barker, Jul 12 2018: (Start)
G.f.: 9*x*(1 + 5*x) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
EXAMPLE
Some solutions for n=4:
0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1
0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0
MAPLE
seq(9*n^3 + (9/2)*n^2 - (9/2)*n, n=1..100); # Robert Israel, Mar 07 2018
PROG
(PARI) Vec(9*x*(1 + 5*x) / (1 - x)^4 + O(x^40)) \\ Colin Barker, Jul 12 2018
(PARI) a(n) = 9*n^3+(9/2)*n^2-(9/2)*n; \\ Altug Alkan, Jul 12 2018
CROSSREFS
Cf. A209650.
Sequence in context: A208009 A207909 A208421 * A267715 A207753 A207107
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Mar 11 2012
STATUS
approved