Maple-assisted proof of formula for A209646

Robert Israel

7 March 2018
Of the $2^{4}=16$ possible configurations for a 1×4 sub-array, the following 9 avoid 001 and 100 horizontally.

```
>> Rowconfigs:= select(A -> (A[1..3] <> [0,0,1]) and (A[1..3] <> [1,
    0,0]) and (A[2..4] <> [0,0,1]) and (A[2..4] <> [1,0,0]), [seq
    (convert(x,base,2)[1..4],x=2^4..2^5-1)]);
Rowconfigs := [[0, 0, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [1, 1, 1, 0], [0, 1, 0, 1], [1, 1, 0, 1], [1, \(0,1,1],[0,1,1,1],[1,1,1,1]]\)
```

Consider the $9^{2} \times 9^{2}$ transition matrix T such that $T_{i j}=1$ if the bottom two rows of a 3×4 sub-array could be in configuration i while the top two rows are in configuration j (i.e. the middle row is compatible with both i and j), and 0 otherwise. The following Maple code computes it.

```
[> Configs:= [seq(seq([Rowconfigs[i],Rowconfigs[j]],i=1..9),j=1..9)]
    :
    compat:= proc(i,j) local k,col;
        if Configs[i][2] <> Configs[j][1] then return O fi;
        for k from 1 to 4 do
            col:= [Configs[i][1][k],Configs[i][2][k],Configs[j][2][k]];
            if col = [0,0,1] or col = [1,0,1] then return 0 fi;
        od;
        1
    end proc:
    T:= Matrix(9^2,9^2,compat);
\[
T:=\left[\begin{array}{c}
81 \times 81 \text { Matrix }  \tag{2}\\
\text { Data Type: anything } \\
\text { Storage: rectangular } \\
\text { Order: Fortran_order }
\end{array}\right]
\]
```

Thus for $n \geq 2, \quad a(n)=u T^{n-2} v$ where u and v are 9^{2}-dimensional row and column vectors respectively of all 1's. The following Maple code produces these vectors.

```
>>u:= Vector[row] (9^2, 1):
    v:= Vector(9^2,1):
```

To check, here are the first few entries of our sequence.
[> seq(u . T^(n-2) . v, $\mathrm{n}=2 \ldots 12$);

$$
\begin{equation*}
81,270,630,1215,2079,3276,4860,6885,9405,12474,16146 \tag{3}
\end{equation*}
$$

Now here is the minimal polynomial P of T, as computed by Maple.

$$
\left[\begin{array}{c}
>\mathrm{P}:=\text { unapply (LinearAlgebra:-MinimalPolynomial (T, } \mathrm{t}), \mathrm{t}) ; \\
P:=t \mapsto t^{5}-4 t^{4}+6 t^{3}-4 t^{2}+t \tag{4}
\end{array}\right.
$$

This turns out to have degree 5 but no constant term. Thus we will have
$0=u P(T) T^{n} v=\sum_{i=1}^{5} p_{i} a(i+n+2)$ for $n \geq 0$, where p_{i} is the coefficient of t^{i} in $P(t)$. This is a homogeneous linear recurrence of order 4.

$$
\left[\begin{array}{rl}
> & \text { rec }:=\operatorname{add}(\operatorname{coeff}(\mathrm{P}(\mathrm{t}), \mathrm{t}, \mathrm{i}) \star \mathrm{a}(\mathrm{i}+\mathrm{n}+2), \mathrm{i}=1 \ldots 5)=0 ; \\
& r e c:=a(3+n)-4 a(4+n)+6 a(5+n)-4 a(6+n)+a(7+n)=0 \tag{5}
\end{array}\right.
$$

The "empirical" formula $a(n)=9 n^{3}+\frac{9}{2} \cdot n^{2}-\frac{9}{2} n$ does satisfy this recursion:
$\left[\begin{array}{c}>\operatorname{normal}\left(\operatorname{eval}\left(r e c, a=\left(n->*_{n} \wedge 3+9 / 2 *_{n} \wedge 2-9 / 2 *_{n}\right)\right)\right. \\ 0=0\end{array}\right) ;$
Given that the formula is correct for the first four terms, it must also work for all the rest as well.

