login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208923
Triangle of coefficients of polynomials u(n,x) jointly generated with A208908; see the Formula section.
3
1, 1, 2, 1, 6, 4, 1, 10, 14, 8, 1, 14, 32, 38, 16, 1, 18, 58, 104, 90, 32, 1, 22, 92, 222, 296, 214, 64, 1, 26, 134, 408, 738, 808, 490, 128, 1, 30, 184, 678, 1552, 2286, 2104, 1110, 256, 1, 34, 242, 1048, 2906, 5392, 6674, 5320, 2474, 512, 1, 38, 308
OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...2
1...6....4
1...10...14...8
1...14...32...38...16
First five polynomials u(n,x):
1
1 + 2x
1 + 6x + 4x^2
1 + 10x + 14x^2 + 8x^3
1 + 14x + 32x^2 + 38x^3 + 16x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208923 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208908 *)
CROSSREFS
Sequence in context: A051482 A349573 A378413 * A185045 A208913 A208911
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 04 2012
STATUS
approved