The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208920 Triangle of coefficients of polynomials v(n,x) jointly generated with A208919; see the Formula section. 3
 1, 2, 3, 3, 7, 7, 4, 12, 26, 19, 5, 18, 62, 85, 47, 6, 25, 120, 235, 264, 123, 7, 33, 205, 515, 879, 803, 311, 8, 42, 322, 980, 2254, 3038, 2358, 803, 9, 52, 476, 1694, 4914, 8708, 10156, 6865, 2047, 10, 63, 672, 2730, 9576, 20958, 32640, 32877, 19588 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For a discussion and guide to related arrays, see A208510. LINKS Table of n, a(n) for n=1..54. FORMULA u(n,x)=u(n-1,x)+2x*v(n-1,x), v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 2...3 3...7....7 4...12...26...19 5...18...62...85...47 First five polynomials v(n,x): 1 2 + 3x 3 + 7x + 7x^2 4 + 12x + 26x^2 + 19x^3 5 + 18x + 62x^2 + 85x^3 + 47x^4 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208919 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208920 *) CROSSREFS Cf. A208919, A208510. Sequence in context: A143444 A108346 A210558 * A210234 A209768 A209169 Adjacent sequences: A208917 A208918 A208919 * A208921 A208922 A208923 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 18:13 EDT 2024. Contains 372765 sequences. (Running on oeis4.)