OFFSET
0,3
COMMENTS
Compare e.g.f. to: Sum_{n>=0} 1/(n+1)! * Product_{k=1..n} (n+k)*x, which is a g.f. of Catalan numbers (A000108).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..275
FORMULA
E.g.f.: Sum_{n>=0} 1/(n+1)! * Product_{k=1..n} ((1+x)^(n+k) - 1).
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 60*x^3/3! + 1192*x^4/4! + 34790*x^5/5! +...
such that, by definition,
A(x) = 1 + ((1+x)^2-1)/2! + ((1+x)^3-1)*((1+x)^4-1)/3! + ((1+x)^4-1)*((1+x)^5-1)*((1+x)^6-1)/4! + ((1+x)^5-1)*((1+x)^6-1)*((1+x)^7-1)*((1+x)^8-1)/5! +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, 1/(m+1)!*prod(k=1, m, (1+x)^(m+k)-1 +x*O(x^n)) ), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved