login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207648
Expansion of e.g.f. Sum_{n>=0} 1/(n+1)! * Product_{k=1..n} ((1+x)^(n+k) - 1).
1
1, 1, 5, 60, 1192, 34790, 1378380, 70445130, 4478636736, 344722776048, 31454679473280, 3345722335272240, 409180573835161920, 56883771843543627840, 8902319140111902785280, 1555438839901675382253600, 301239031844599064651635200, 64260075520580099615272097280
OFFSET
0,3
COMMENTS
Compare e.g.f. to: Sum_{n>=0} 1/(n+1)! * Product_{k=1..n} (n+k)*x, which is a g.f. of Catalan numbers (A000108).
LINKS
FORMULA
E.g.f.: Sum_{n>=0} 1/(n+1)! * Product_{k=1..n} ((1+x)^(n+k) - 1).
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 60*x^3/3! + 1192*x^4/4! + 34790*x^5/5! +...
such that, by definition,
A(x) = 1 + ((1+x)^2-1)/2! + ((1+x)^3-1)*((1+x)^4-1)/3! + ((1+x)^4-1)*((1+x)^5-1)*((1+x)^6-1)/4! + ((1+x)^5-1)*((1+x)^6-1)*((1+x)^7-1)*((1+x)^8-1)/5! +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, 1/(m+1)!*prod(k=1, m, (1+x)^(m+k)-1 +x*O(x^n)) ), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A207649.
Sequence in context: A113665 A147585 A138215 * A349883 A010793 A180614
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved