login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207649
E.g.f.: Sum_{n>=0} 1/n! * Product_{k=1..n} ((1+x)^k - 1).
2
1, 1, 2, 9, 60, 580, 7380, 119700, 2387280, 57211056, 1615703040, 52950688560, 1988213895360, 84622184412480, 4045503794492160, 215531680987022400, 12709328457015590400, 824497514996060505600, 58531734588587835294720, 4525412571041289046479360, 379428698362674642409728000, 34365923697307101211784908800, 3350637193653655199937586944000
OFFSET
0,3
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 60*x^4/4! + 580*x^5/5! +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1)/2! + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)/3! + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)*((1+x)^4-1)/4! +...
or, more explicitly,
A(x) = 1 + x + x^2*(2+x)/2! + x^3*(2+x)*(3+3*x+x^2)/3! + x^4*(2+x)*(3+3*x+x^2)*(4+6*x+4*x^2+x^3)/4! + x^5*(2+x)*(3+3*x+x^2)*(4+6*x+4*x^2+x^3)*(5+10*x+10*x^2+5*x^3+x^4)/5! +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, 1/m!*prod(k=1, m, (1+x)^k-1 +x*O(x^n)) ), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A179525.
Sequence in context: A268205 A269600 A269460 * A289713 A341956 A349289
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2012
EXTENSIONS
a(21)-a(22) corrected by Andrew Howroyd, Feb 22 2018
STATUS
approved