login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207616
Triangle of coefficients of polynomials u(n,x) jointly generated with A207617; see the Formula section.
4
1, 2, 4, 1, 7, 4, 11, 11, 1, 16, 25, 6, 22, 50, 22, 1, 29, 91, 63, 8, 37, 154, 154, 37, 1, 46, 246, 336, 129, 10, 56, 375, 672, 375, 56, 1, 67, 550, 1254, 957, 231, 12, 79, 781, 2211, 2211, 781, 79, 1, 92, 1079, 3718, 4719, 2288, 377, 14, 106, 1456, 6006
OFFSET
1,2
COMMENTS
With offset 0, equals the stretched Riordan array ((1 - z + z^2)/(1 - z)^3, z^2/(1 - z)^2) in the notation of Corsani et al., Section 2. - Peter Bala, Dec 31 2015
LINKS
C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
FORMULA
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + v(n-1,x) + 1, where u(1,x) = 1, v(1,x) = 1.
EXAMPLE
First five rows:
1
2
4 1
7 4
11 11 1
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207616 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207617 *)
CROSSREFS
Cf. A207617, A208510, A000124 (column 1).
Sequence in context: A374116 A256107 A207610 * A105552 A112852 A121531
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Feb 20 2012
STATUS
approved